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Computation of Cutoff Wavenumbers for Partially

Filled Waveguides of Arbitrary Cross Section

Using Surface Integral Formulations

and the Method of Moments
Shianfeng Shu, Paul M. Goggans, and Ahmed A, Kishk

Abstract—A procedure for determining the cutoff wavenum-

bers of partially dielectric tilled waveguides of arbitrary cross
section is presented. A numerical approach based on surface
integral formulations and the method of moments is used to

obtain a matrix equation. Muller’s method is then applied to
find the wavenumbers that make the matrix determinant vanish.
These are the cutoff wavenumbers. On the conducting walls

of the waveguide, perfect electric conductor, perfect magnetic

conductor, and imperfect conductor surfaces are considered. The

transverse electric and magnetic cases are treated separately.
The impedance boundary condition and the symmetry of the

waveguide cross section are used to reduce the matrix size in
the method of moments. Spurious modes have not been observed

using this method. To validate the accuracy of this method,
results for circular, partially tilled rectangular, and two walled

corrugated rectangular waveguides are compared to analytical
results. Examples such as T-septate rectangular, coaxial, and

dielectric-loaded double-ridged waveguide are also considered.
Accurate prediction on the cutoff wavenumbers is achieved.

I. INTRODUCTION

T he problem of electromagnetic wave propagation inside

waveguides of arbitrary cross section has been the subject

of many research works over the last two decades [1] – [10].

A variety of numerical approximation methods has been

employed [1]. The early methods frequently suffer from the

appearance of nonphysical or spurious modes [4]. Recently,

several papers [5] – [9] proposed methods without spurious

solutions. Among these methods are the finite element method

(FEM) and the method of moments (MM).

These two methods each have properties which makes the

use of one or the other advantageous depending on nature of

the waveguide and the desired computational result. Due to

its surface formulation, the MM cannot easily model materials
with a rapid spatial variation of constitutive parameters. Be-

cause of its volumetric formulation, the FEM is the method

to choose when treating waveguides filled with truly inho-

mogeneous material. If, however, the inhomogeneous region

is composed of a few distinct subregions, each with constant
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material parameters, the MM can be employed and may result

in fewer computations than required in the FEM solution.

Because it is cast in terms of the field components, the finite

element method may be the best choice if field components

are desired. Similarly, the MM is formulated in terms of the

equivalent surface currents on the waveguide boundaries and

so may be the best choice if currents are desired. Of course,

either method can calculate currents and fields with auxiliary

computations. A practical point to consider is that research in

the FEM solution of waveguide problems is more mature than

research in MM solutions.

Several authors have successfully solved the problem of

hollow waveguide of arbitrary cross section with perfect

electric conductor walls using the MM [8], [9]; however, the

problem of waveguides partially filled with dielectric and with

impedance walls has not yet been fully investigated. Here we

use the MM to determine the cutoff wavenumbers of partially

filled waveguides with impedance surfaces.

The size of the MM impedance matrix is much greater

for a waveguide with a dielectric filling than for identically

shaped hollow waveguide. This is because, on the dielectric

interface, the equivalent electric and magnetic currents must

be determined in addition to the equivalent electric current on

the conductor surfaces. Excessive execution time and memory

storage requirements are among the probl~ms caused by large

matrix size, For a matrix of order IV, the inversion time is of

order ~3 and the required storage area is of order ~2. Another

serious problem associated with large matrix size is that the

behavior of the determinant as a function of the wavemnnber

becomes more complicated as IV increases. The null points

of the determinant versus the wavenumber are the desired

cutoff wavenumbers. A typical plot of the magnitude of the
determinant versus the wavenumber is given in Fig. 1. The

valleys around the null points become much narrower and

sharper as the matrix size increases [9]. For large matrices,

it is very difficult to locate the null points and the cutoff

wavenumbers can be easily missed.

The size of the MM impedance matrix can be reduced

in several ways. Since the MM is formulated in terms of

equivalent currents on the boundary surfaces, any other method

that yields a direct approximation to these currents, or a

relationship between these currents, can be combined with

it to reduce the number of unknowns. Such methods are
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wavennnrber k

Fig. 1. Behavior of determinant of impedance matrix for the dielectric-loaded
double-ridged waveguide.

referred to as hybrid or combined methods. For example, the

impedance boundary condition (IBC) can be used to relate the

equivalent magnetic currents to the equivalent electric currents

on some surface boundaries to reduce significantly the matrix

size. The impedance boundary condition is typically applied

to corrugated surfaces and imperfectly conducting surfaces.

The matrix size can further be reduced by considering the

symmetry of the waveguide.

II. FORMULATIONS

Fig. 2 illustrates the general geometry of an arbitrary cross-

section waveguide partially filled with dielectric. For this

geometry, there are three distinct regions: R,, R,, and Rd.

Region Rc is conductor exterior to the waveguide, region R, is

empty space characterized by permittivity co and permeability

LLO, and region Rd is the homogenQus dielectric region charac-

terized by permittivity Ed and permeability fld. The conductor

surfaces may consist of perfect electric conductor (PEC),

perfect magnetic conductor (PMC), andlor imperfect conductor

(IC) where the IBC is applied. In the following, J; and kf~

are, respectively, the electric and the magnetic surface currents,

and S$ dermtes the surfaces of the boundaries. The superscript
a denotes the type of conductor and the subscript P denotes the

surface. The superscripts are defined as follows: (i) denotes

an IC boundary, (m) denotes a PMC boundary, and (e)

denotes a PEC boundary. The subscripts are defined as follows:

(cc) denotes the boundary surface between the conductor and

empty space, (cd) denotes the boundary surface between the

conductor and dielectric, and (d) denotes the boundary surface

between the dielectric and empty space. So, SC., Sd, and SCd

are the waveguide boundaries. For the purposes of developing

the MM expressions, it is assumed that source currents exist

in R.. The symbols Ji and Mi denote source currents. The

fields E. and Ho are the electric and magnetic fields in R.,

and Ed and Hd are the electric and magnetic fields in Rd.

The unit normal vector on the surfaces is denoted by ii,.

The boundary conditions are as follows: the tangential

component of the electric field is zero on PEC, the tangential

component of the magnetic field is zero on PMC, the electric

and magnetic fields are continuous across the dielectriclfree-

space interface. On IC, the following condition (the impedance

Rc

Smce

Sice

s:

Fig. 2. The original problem for waveguides partially filled with dielectric.

boundary condition) is assumed:

Er/ – (h . Ev)fi = ~Cv~O(fi X Hr/) on S~v (v= e or d)

(1)

where qIO, qce, and 7/cdare the intrinsic impedance of the space,

the surface impedance cm s~d, and the surface impedance on

S~d, respectively.

Applying the equivalence principal [11], two auxiliary prob-

lems are created from the original problem (Figs. 3 and 4). C)ne

situation is equivalent to the original problem in empty space

(region Rc, between SC. and Sal), and the other is equivalent to

the original problem inside the dielectric (region Rd between

sd and SCd). The surface equivalent currents are defined as

follows:

J; = (+fi) X H. on S~(q= iore) (2)

M: = E. X (+fi) on S~(q=iorm) (3)

where p is ce, cd, or d, u k O or d, and the sign of the normal

is+ forv=Oand–forv= d.

Using the impedance boundary condition given in (l), the

equivalent magnetic surface currents can be expressed in terms

of the equivalent electric surface currents on S:..

M; = qpqo (J; X ii) on S; (p is ce or cd). (4)

(%3PO) E= O,H=O

Fig. 3. The empty space equivalent situation.

(Rc,Re) E=O,H=O

Fig. 4. The dielectric region equivalent situation.
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In the zero field regions, the constitutive parameters are

taken to be the same as in the nonzero field region, so that

the equivalent currents radiate in an unbounded homogeneous

region. The tangential components of E and H must be zero

just outside SCe and sd so that:

Etan(Ji, M,)+ &an(J:e) + %1. (J!., M:.)

+ Et..(AZ~)+Et..(,7d,~d) = O just outside s~~ and Sd

(5)

h x H(Ji, Mi) + ii X H(J:e) + h X ~(~:e,kf:e)

+ ‘ii X H(M~) +fi X H(Jd,Md) = O

just outside SC, and sd (6)

( “)%.(J~.) – E&. Y:d + M;d

– ~t..(M~)–~t..(Jd, Md) = O just outside SCd and sd

(7)

‘)–h X H(J~d) – h X H(J;d, Mcd

— ii X H(M~) – h X H(Jd,Md) = O

just outside fi’ccJand sd (8)

where

Etan=–?3xtix E. (9)

Equations (5) and (7) express the electric field boundary

condition in the region Re and the region Rd of the equivalent

situations. These two equations form a set of integral equations

known as the electric field integral equation (EFIE).

Equations (6) and (8) express the magnetic field boundary

conditions in region Re and region Rd of equivalent situations.

These two equations form a set of integral equations known

as the magnetic field integral equation (MFIE),

A new set of integral equation can be obtained by combining

the equations of the EFIE and the MFIE. This new set of

equations is referred to as the combined field integral equation

(CFIE). To obtain the equations of CFIE, the equations of the

EFIE are multiplied by dimensional and scaling factor and

then added to the equations of the MFIE. ,The equations of the

CFIE are MFIE +czEFIE/qO (+ for the inside equations and

– for the outside equations). The dimensional’ constant q. is

required so that the dimensions of the EFIE match those of the

MFIE. In principle, the value of scaling factor ~ is arbitrary

as long as the real part of a is positive (usually a is real and

on the order of unity). In practice, the numerical results are

relatively insensitive to a.

In general, the analysis of waveguides is a three-dimensional

problem. However, at cutoff frequencies, it is a two-

dimensional problem because there are no propagating waves.

As a result, the cutoff wavenumbers can be determined from

the two-dimensional problem. Because, the waveguide is a 2-
D problem at cutoff, an arbitrarily polarized wave can always

be written as the combination of waves that are transverse

electric (TE) and transverse magnetic (TM) to the axis of the

waveguide (here taken to be the z direction).

In the TM case at cutoff, the equivalent electric currents

are all axially directed and the equivalent magnetic currents

are circumferentially directed, The equivalent currents can be

written in the following form:

J; = J;~ (lo)

M; . J.@ (11)

where p stands for (cc), (cd), or (d), and q stands for (i), (e),

or (m). The position for q is left blank when p is d. In these

expressions, 2 and ~ are unit vectors in z direction and the

tangential direction, respectively, and

i=.2xh. (12)

Specializing (4) to the TM case, results in the following

equation:

ikf;t =’qprloJ;~ on S; (p is ce or cd) . (13)

The currents in (10), (11), and (13) give rise to TM fields

only. If these currents are substituted into (5)–(8), the scaler

integral equations for the TM case are obtained.

In the TE case at cutoff, the equivalent electric currents

are all circumferentially directed and the equivalent magnetic

currents are axially directed. The procedure for obtaining the

scaler integral equations for the TE case is similar to that for

the TM case.

III. METHOD OF MOMENTS

To apply the MM, the boundaries of the waveguide are

divided into segments. Here, a piecewise linear approximation

of the boundaries of the waveguide is made. The surface

currents are expanded on each segment in terms of pulse

functions. Then the point matching method is employed on

the center of each segment. This method results in a system

of linear equations in terms of unknown coefficients.

For the TM case, the equivalent currents are expanded as

J; = .2 ~ InPn on S~(p is ce, cd or d, q is e or m,)
n

(14)

and

M; .
E &KnPn on S~(p is ce, cd or d, q is m) .

n
(15)

In (14) and (15), In and Kn are the to-be-determined electric

and magnetic current expansion coefficients, and the F?~are the

pulse expansion functions, The vector ~~ is the unit tangent on

zone n. From (13), the magnetic currents on the IBC surfaces

are

M: = ~ kqPqOI~P~(P is ce or cd). (16)

n

If the above equations are substituted into scaler equations

for TM case and the resulting expressions are required to be

satisfied at the matching points, the original problem can be

reduced to a matrix equation of the form

[Z(k)] [J] = [V] . (17)
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In (17), Z is a square matrix of order n% + 2nd + n~t

where, n~t, n~, and n~t are the numbers of segments on

Se., Sd, and Scd, respectively. Expressions for the generalized

impedance elements of [Z(k)] are given in [12].

For the TE case, the procedure of applying MM is similar

to that in TM case. The impedance elements in the TE case

can be derived by using duality from the impedance elements

in the TM case.

At cutoff, no incident wave is necessary to produce the

fields inside the waveguide, the matrix Z is singular and the

determinant of the matrix Z is zero. As a result, the cutoff

wavenumbers are characterized by

det[Z(kc)] = O. (18)

The determinant in (18) can be determined using the LU

decomposition method [13].

In the method of moments, the expansion set of the equiv-

alent currents is not complete, so the absolute value of the

matrix determinant cannot be exactly zero. As a function of k,

the matrix determinant shows a set of minimums instead. The

values of k, where the minimums occur, are the approximate

cutoff wavenumbers. The locations of the minimums are here

determined by Muller’s method. Initial guesses for the values

of the cutoff wavenumbers are obtained by scanning the range

of k values of interest with the body discretized into relatively

large segments (approximately one-fifth wavelength zones).

The body is then discretized into relatively small segments

(approximately one-twentieth wavelength zones) and Muller’s

method is used for each guess. The larger the number of the

segments taken in the MM solution, the more exactly the

cutoff wavenumbers can be obtained. At cutoff, the smallest

eigenvalue of [Z(KC)], )~i., corresponds to the wavenumber

in the z direction. It is not zero because of the incomplete

expansion of the wall currents. The eigenvector of the MM

matrix corresponding to ~~in is an approximation of the wall

currents at cutoff.

IV. NUMERICAL EXAMPLES

A numerical code was developed on the Cray-XMP su-

percomputer. Using this code, the cutoff wavenumbers of

several typical geometries” were calculated. Results generated

with this code are presented in this section. First, some

geometries with analytical solutions are considered. Then,

more complicated geometries are considered and the results

are compared to those obtained by other authors. Finally, a

new ridged waveguide with dielectric loading and corrugated

surfaces is considered and the results are discussed.

A. Circular Waveguide

As a first example, a hollow circular waveguide is con-

sidered. This example is the test case for curved boundaries.

In Table I, the computed results (both TE and TM case)

are compared with the exact results. The MFIE is used for

this geometry. The circular boundary is divided into thirty

segments. The largest difference between the computed values

and the exact values given in Table I is less than 0.570.

TNLE I

CUTOFF WAVENUMBERS FOR THE HOLLOW CIRCULAR WAVEGUIDE
WITH UNITY RADIUS

TM TE

Exact Computed Exact Computed

2.4048 2.4108 1.8412 1.8449

3.8317 3.8382 3.0542 3.0629

5.1356 5.1429 3.8317 3.8356

5.5200 5.5272 4.2012 4.2164

B. Partially Dielectric Filled Rectangular Waveguide

As a numerical example of partially dielectric filled waveg-

uides, the waveguide shown in Fig. 5(a) was investigated, Half

the waveguide is filled with dielectric with relative permittivity

equal to 1.5. The other half is assumed to be vacuum, The

exact solution for this geometry is given in [15]. Above cutoff,

independent modes TE to z or TM to x exist in this waveguide.

At cutoff, modes TE to x correspond to modes TM to z and

modes TM to z correspond to modes TE to z, In Table II, the

computed results are compared to the exact solutions. Here, the

matrix is of order 102 and the MFIE is used. The largest error

in Table II is less than 0.1%. Note that the boundary of the

dielectric region must be divided according to the wavelength

in the dielectric material to achieve accurate solutions.

C. Half of the Partially Filled Rectangular Waveguide

For the case above, the symmetry of the waveguide can

be advantageously considered to reduce the matrix size. As

illustrated in Fig. 5(b), the symmetry plane is denoted as PP’.

At cutoff, the original problem can be subdivided into four

distinct cases: TM or TE to z modes with PEC or PMC

walls at PP’. The PEC wall provides the cutoff wavenumber

,Y
P
I

(a) (b)

Fig. 5. (a) Partially dielectric filled rectangular waveguide. For this example

p, = 1.0, 6, = 1.5, a = 0.45, b = 1.0, and d = 0.225. (b) Half of the
partially filled rectarrgular waveguide.

TABLE II
CUTOFF WAVENUMBERS FOR PARTIALLY FILLED RECTANGULARWAVEGUIDE

TM TE

Exact Computed Exact Computed

6.8072 6.8086 6.2136 6.2145
8.3277 8.3259 6.8356 6.8379

10.3522 10.3409 8.4665 8.4694
12.6140 12.5882 10.7253 10.7295
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TABLE III
CUTOFF WAVENUMBERS FOR PARTIALLY DIELECTRIC

FILLED RECTANGULAR WAVEGUIDE (HALF) TM

(PMC*) (PEC*)
Exact Computed Computed

6.8072 6.7971
8.3277 8.3172

10.3522 10.3274
12.6140 12.5699

12.9932 12.9683

*PMC and PEC denote the wall of symmetry.

corresponding to the modes that have zero tangential electric

field on the plane of symmetry of the original problem. On the

other hand, the PMC wall provides the cutoff wavenumbers

corresponding to modes that have zero tangential magnetic

field on the plane of symmetry of the original problem. If the

cutoff wavenumber is the same for PEC wall and PMC wall

cases, it means that the tangent electric and magnetic fields

are both zero on the plane of symmetry.

In Table III, the symmetry of the waveguide has been used

to replace the plane of symmetry with a PEC or PMC wall,

The results in Table III are for the TM to z (TE to z) case. For

the purpose of comparison, the length of the zones remained

unchanged when symmetry was considered. The matrix order

using symmetry is 58 (it was 102 before). The EFIE was used

for the case of the PEC at the plane of symmetry, and the MFIE

was used for the case of the PMC at the plane of symmetry.

The error of the computed values in Table III is then 0.2%

(compared to 0.1% before). Using symmetry, the matrix size

is reduced and the accuracy remains at an acceptable level.

Accuracy matching the previous result can be achieved using

smaller zone size with the waveguide symmetry. Reducing

the zone size to increase accuracy while using symmetry

still results in reduced matrix order compared to solving the

complete problem.

D. T-Septate Rectangular Waveguide

The T-septate rectangular waveguide, illustrated in Fig. 6,

has been considered by many investigators. The current method

can be used for this geometry because pulse expansion func-

tions and point matching method are employed in the MM (the

matching points need not be at the junctions of the T-septate).

For this waveguide, the EFIE is used because the T-septate is

assumed to be infinitesimally thin. The results of the present

method are compared to those of [7] in Table IV. In [7], the

finite difference time domain method was used to find the

Fig. 6. T-septate

4 a _~

b-ld

1

2W I
b

I
rectangular waveguide. For this example, a = 1.0,
b = 0.45, a! = 0.25, and w = 0.125.

TABLE IV
CUTOFF WAVENUMBERS FOR THE T-SEPTATE RECTANGULAR WAVEGUIDE

TM TE

Reference [7] Present Reference [7] Present

8.12 8.1302 3.00 3.0015
10.88 10.8720 5.49 5.4265
14.24 14.3124 7.22 7.2252
14.50 14.5439 8.88 8.8625

cutoff wavenumber. The matrix in the present method was of

order 64.’ The largest difference in Table IV is about 1.O’%.

E. Coaxial Waveguide

Fig. 7 shows a coaxial waveguide with a rectangular con-

ducting core and circular conducting exterior boundary. In

Table V, the solutions of this example are compared to the

values obtained by Swaminathan et al. [9] using suirface

integral formulations also. The largest difference is about

1.0%. The EFIE is used here. The matrix size is of order 48.

F, Two-Walled Rectangular Corrugated Waveguide

Fig. 8 shows a two-walled corrugated rectangular wave-

guide. This geometry is a test case for impedance surfaces. In

this geometry, the slots are not in the longitudinal direction.

Thus, the cross section of this waveguide is not the same in

every plane-cut normal to the direction of propagation, which

means that this is not a two-dimensional problem. However,

if the front surface of the corrugations is taken as impedance

surface, this geometry can be solved as a 2-D problem. In

the actual geometry, there is a constant number of slots per

wavelength, and the ridges are assumed to be infinitely thin

so that the longitudinal geometry is not a parameter in the

expression of the surface impedance. With these assumptions,

Fig. 7. Coaxial waveguide. For this example, a = 1.0, b = 0.5, and
C = 0.25.

TABLE V

CUTOPF WAVENUMBERS FOR COAXIAL WAVEGUIDE

TM TE

Reference [9] Present Reference [9] Present

3.8919 3.8975 1.7407 1.7404

4.1666 4.1706 3.0441 3.0464

4.4450 4.4500 4.2199 4.2175
5.2645 5.2657 4.6451 4.6127
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r-----+

Fig. 8. Two-walled rectangular corrugated waveguide.

the surface impedance is [14]

z.= ~ tarlp,.s (19)

where /3~ = k2 – (nT/a)2 and n is the mode number. In

(19), the quantity s is the depth of the corrugations. If /31s is

small when s is small, the surface impedance can be taken as

mode independent so that Zs = jwps. At the surfaces of the

corrugations, y = &b/2, Ez = O, and Ey # O. This boundary

condition will be satisfied by hybrid electric (HE) modes (TE

to x modes). At cutoff, HE modes reduce to the modes of TM

to z. As a result the TM to z case can be used to compute the

cutoff wavenumber of HE modes.

@ analytical solution for this problem is available in [14].

The cutoff wavenumber of several modes are calculated from

the exact solutions and compared to those obtained using

the present method as shown in Fig. 9. In this figure, the

cutoff wavenumbers are plotted versus the ratio of b/a with

s/a = 0.05. The largest difference between the numerical

and analytical results in Fig. 9 is less than 0.1$70. The CFIE

formulation (a = 1) is employed in this example.

G. Dielectric-Loaded Double-Ridged Waveguide

Table VI lists the cutoff wavenumbers obtained by the

present method for the dielectric-loaded double-ridged wave-

guide illustrated in Fig. 10(a). The matrix order is 158. The

results obtained with the present method are compared to those

computed using the finite element method in [3]. In [3], only

certain TE modes are cmsidered. Modes not reported in [3]

are also given in Table VI.

Due to the symmetry of this waveguide, only one-quarter

of the original geometry needs to be considered in the MM

solution. This is illustrated in Fig. 10(b). The original problem

can be subdivided into eight distinct cases: TE or TM to z with

14,
1 — exact I

z~
0.5 0.75 1 1.25 1.5

bfa

Fig. 9. Cutoff wavenumbers of two-walled rectangular corrugated wave-

guide.

TABLE VI
CUTOFF WAVENUMBERS FOR ORIGINAL DIELECTRIC-@ADED

DOUBLE-RIDGED WAVEGUIDE

TE TM

Reference [3] Present Reference [3] Present

0.1288 0.1291 0.6576

NA 0.3137 NA* 0.8694

NA 0.5080 0.9786

0.6190 0.6190 1.0758

0.6552 0.6550 1.1741

NA 0.6931 1.2868

NA 0.7608 1.3811

0.8890 0.8871

NA 0.9459

NA 1.0054

*NA means that the published data are not available

PEC or PMC walls at the two planes of symmetry, s and p. The

modes are identified by a notation like TE(Me) that indicates

a TE mode in the subdivided problem with PMC on s and

PEC on p. The cutoff wavenumbers given in Table VI from

[3] are for TE(Me) modes. The largest difference between our

results (calculated without the use of waveguide symmetry)

and those in [3] is about 1.OYO.

Cutoff wavenumber results determined using waveguide

symmetry are given in Table VII for TE modes. In the sub-

divided problem, the matrix order is 48, which is one-third

of the matrix order obtained from the complete geometry.

The boundary segmentation is maintained as in the original

—a—

(a) (b)

Fig. 10. (a) Dielectric-loaded double-ridged waveguide. For this example,
p. = 1.0, e, = 1.5, a = 12.70, b = 10.16, s = 2.54, and w = 2.79. (b)
One-quarter of the dielectric-loaded double-ridged waveguide.

TABLE VII

CUTOFF WAVENUMBERS FOR DIELECTRIC-LOADED DOUBLE-RIDGED
WAVEGUIDE (ONE-QUARTER)

TE
Original TE(Me)* TE(eE)* TE(Mm)* TE(Mm)”

0.1291
0.3137
0.5080
0.6190
0.6550
0.6931
0.7608

0.8871
0.9459
1.0054

0.1291

0.3160 0.3165
0.5116

0.6192 0.6193
0.6559

0.6895 0.6940
0.7658

0.8894

0.9446 0.9446
1.0116

*Lowercase m or e denotes magnetic or electric wall at symmetry
plane S; uppercase M or E denotes magnetic or ele~tric wall at

symmetry plane p.
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—2a—

-.

p PEC
~ ~r
1

PMC

\/
cormgated Wilk

(a) (b)

Fig. 11. (a) Two-wall corrugated dielectric-loaded double-ridged waveguide.

For this example, a = 1.0, b = 1,0, and t = 0.2, (b) One-quarter of the

two-wall corrugated dielectric-loaded double-ridged waveguide.

5

R

... ..... ..... ..... ..... .... ..... .... .... .... .... ..

----- –W-=ljjz- – –
.

~4

g

g3- - ~=o,l

~ ---- S=0,05 W=O.5
— ss 0.025

z~
12345678910

%

Fig. 12. Cutoff wavermmber versus the dielectric constant in a two-wall

corrugated dielectric-loaded double ridged waveguide.

problem. Because the matrix order is greatly reduced in the

subdivided problem compared to the original problem, the

valleys around the null points of the determinant of the MM

matrix are wider so that the cutoff wavenumbers are easier

to locate.

H. Two-Wall Corrugated Dielectric-Loaded Ridged Waveguide

The final example was selected to have a combination

of impedance and dielectric materials as well as perfect

electric and magnetic conductors. This example is the two-

wall corrugated dielectric-loaded ridged waveguide shown in

Fig. Ii(a). Here, the surface impedance is treated as in the

example of Fig. 8, At the cutoff frequency, the TE to x

modes reduced to the TM to z modes. Thus, the TM to z

polarization is considered. Using the partitioning procedure,

the problem is divided to eight distinct cases (as in the

dielectric-loaded double-ridged waveguide). The partitioned

waveguide is shown in Fig. 1l(b). The cutoff wavenumbers of

the dominant mode are plotted versus the dielectric constant

with the aperture width, 2w, and the corrugation depth, s, as

the parameters in Fig. 12. When the aperture width is small,

the cutoff wavenumber is not affected by the dielectric constant

indicating that the waveguide is acting as two rectangular

waveguides, each with one corrugated wall. When the aperture

width increases, the cutoff wavenumber varies significantly
with the dielectric constant, but the corrugation depth has

minimal effect on the cutoff wavenumber. Note that the

interior dimensions of the waveguide, a and b, are constant

so that increasing the corrugation depth increases exterior

dimensions of the waveguide. The cross section used to

analyze the waveguide does not change with corrugation depth

because the surface impedance is used to model the variation

in corrugation depth.

V. CONCLUSIONS

For computation of cutoff wavenumber, a numerical tech-

nique has been successfully applied to partially dielectric filled

waveguides of arbitrary cross section. This method is based

on surface integral formulations and the method of moments.

Polarizations TE to z and TM to z are considered separately.

Since perfect electric conductor, perfect magnetic conduc-

tor, and imperfect conductor surfaces have been considered

on the conducting wall of the waveguides, techniques may be

used to reduce the matrix size in the method of moments.

The impedance boundary condition is used on the imperfect

conductor surfaces. The IBC is also used to simulate corru-

gated walls so that the equivalent currents inside the corrugated

slots need not be considered. This reduces the MM matrix size.

Waveguide cross-section symmetry is also used to reduce

the matrix size. The planes of cross-section symmetry are

replaced by perfect electric conductor or perfect magnetic

conductor walls, so that the original problem can be subdivided

into several smaller problems. The cutoff wavenumbers of new

geometries that use electric or magnetic conductor walls at the

symmetry planes are the same as that of original geometry.

Since only a part of the original geometry is considered, the

matrix size is greatly reduced.

No spurious modes were observed in this work. The accu-

racy of the method presented here has been tested with many

typical examples. In most geometries, the computed results are

compared to analytical results or to published data. Excellent

agreement has been achieved.
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