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Computation of Cutoff Wavenumbers for Partially
Filled Waveguides of Arbitrary Cross Section
Using Surface Integral Formulations
and the Method of Moments

Shianfeng Shu, Paul M. Goggans, and Ahmed A. Kishk

Abstract— A procedure for determining the cutoff wavenum-
bers of partially dielectric filled waveguides of arbitrary cross
section is presented. A numerical approach based on surface
integral formulations and the method of moments is used to
obtain a matrix equation. Muller’s method is then applied to
find the wavenumbers that make the matrix determinant vanish.
These are the cutoff wavenumbers. On the conducting walls
of the waveguide, perfect electric conductor, perfect magnetic
conductor, and imperfect conductor surfaces are considered. The
transverse electric and magnetic cases are treated separately.
The impedance boundary condition and the symmetry of the
waveguide cross section are used to reduce the matrix size in
the method of moments. Spurious modes have not been observed
using this method. To validate the accuracy of this method,
results for circular, partially filled rectangular, and two walled
corrugated rectangular waveguides are compared to analytical
results. Examples such as T-septate rectangular, coaxial, and
dielectric-loaded double-ridged waveguide are also considered.
Accurate prediction on the cutoff wavenumbers is achieved.

1. INTRODUCTION

he problem of electromagnetic wave propagation inside

waveguides of arbitrary cross section has been the subject
of many research works over the last two decades [1]—[10].
A variety of numerical approximation methods has been
employed [1]. The early methods frequently suffer from the
appearance of nonphysical or spurious modes [4]. Recently,
several papers [5]-[9] proposed methods without spurious
solutions. Among these methods are the finite element method
(FEM) and the method of moments (MM).

These two methods each have properties which makes the
use of one or the other advantageous depending on nature of
the waveguide and the desired computational result. Due to
its surface formulation, the MM cannot easily model materials
with a rapid spatial variation of constitutive parameters. Be-
cause of its volumetric formulation, the FEM is the method
to choose when treating waveguides filled with truly inho-
mogeneous material. If, however, the inhomogeneous region
is composed of a few distinct subregions, each with constant
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material parameters, the MM can be employed and may result
in fewer computations than required in the FEM solution.
Because it is cast in terms of the field components, the finite
element method may be the best choice if field components
are desired. Similarly, the MM is formulated in terms of the
equivalent surface currents on the waveguide boundaries and
so may be the best choice if currents are desired. Of course,
either method can calculate currents and fields with auxiliary
computations. A practical point to consider is that research in
the FEM solution of waveguide problems is more mature than
research in MM solutions.

Several authors have successfully solved the problem of
hollow waveguide of arbitrary cross section with perfect
electric conductor walls using the MM [8], [9]; however, the
problem of waveguides partially filled with dielectric and with
impedance walls has not yet been fully investigated. Here we
use the MM to determine the cutoff wavenumbers of partiaily
filled waveguides with impedance surfaces.

The size of the MM impedance matrix is much greater
for a waveguide with a dielectric filling than for identically
shaped hollow waveguide. This is because, on the dielectric
interface, the equivalent electric and magnetic currents must
be determined in addition to the equivalent electric current on
the conductor surfaces. Excessive execution time and meniory
storage requirements are among the problems caused by large
matrix size. For a matrix of order IV, the inversion time is of
order N and the required storage area is of order N2. Another
serious problem associated with large matrix size is that the
behavior of the determinant as a function of the wavenumber
becomes more complicated as N increases. The null points
of the determinant versus the wavenumber are the desired
cutoff wavenumbers. A typical plot of the magnitude of the
determinant versus the wavenumber is given in Fig. 1. The
valleys around the null points become much narrower and
sharper as the matrix size increases [9]. For large matrices,
it is very difficult to locate the null points and the cutoff
wavenumbers can be easily missed.

The size of the MM impedance matrix can be reduced
in several ways. Since the MM is formulated in terms of
equivalent currents on the boundary surfaces, any other method
that yields a direct approximation to these cutrents, or a
relationship between these currents, can be combined with
it to reduce the number of unknowns. Such methods are
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Fig. 1. Behavior of determinant of impedance matrix for the dielectric-loaded

double-ridged waveguide.

referred to as hybrid or combined methods. For example, the
impedance boundary condition (IBC) can be used to relate the
equivalent magnetic currents to the equivalent electric currents
on some surface boundaries to reduce significantly the matrix
size. The impedance boundary condition is typically applied
to corrugated surfaces and imperfectly conducting surfaces.
The matrix size can further be reduced by considering the
symmetry of the waveguide.

II. FORMULATIONS

Fig. 2 illustrates the general geometry of an arbitrary cross-
section waveguide partially filled with dielectric. For this
geometry, there are three distinct regions: R., R., and Rjy.
Region R, is conductor exterior to the waveguide, region R, is
empty space characterized by permittivity €, and permeability
to, and region R is the homogenous dielectric region charac-
terized by permittivity ¢; and permeability 4. The conductor
surfaces may consist of perfect electric conductor (PEC),
perfect magnetic conductor (PMC), and/or imperfect conductor
(IC) where the IBC is applied. In the following, J§ and M3
are, respectively, the electric and the magnetic surface currents,
and S§ denotes the surfaces of the boundaries. The superscript
« denotes the type of conductor and the subscript 3 denotes the
surface. The superscripts are defined as follows: (¢) denotes
an IC boundary, (m) denotes a PMC boundary, and (e)
denotes a PEC boundary. The subscripts are defined as follows:
(ce) denotes the boundary surface between the conductor and
empty space, (cd) denotes the boundary surface between the
conductor and dielectric, and (d) denotes the boundary surface
between the dielectric and empty space. So, Sce, Sq, and S¢q
are the waveguide boundaries. For the purposes of developing
the MM expressions, it is assumed that source currents exist
in R.. The symbols J; and M ; denote source currents. The
fields Eq and H are the electric and magnetic fields in R,,
and E,; and H, are the electric and magnetic fields in R.
The unit normal vector on the surfaces is denoted by 7.

The boundary conditions are as follows: the tangential
component of the electric field is zero on PEC, the tangential
component of the magnetic field is zero on PMC, the electric
and magnetic fields are continuous across the dielectric/free-
space interface. On IC, the following condition (the impedance
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Fig. 2. The original problem for waveguides partially filled with dielectric.

boundary condition) is assumed:

on Si, (v=eord)
M

where 779, 7jce, and 7.4 are the intrinsic impedance of the space,
the surface impedance on St,, and the surface impedance on
Si,, respectively.

Applying the equivalence principal [11], two auxiliary prob-
lems are created from the original problem (Figs. 3 and 4). One
situation is equivalent to the original problem in empty space
(region R, between S, and Sy), and the other is equivalent to
the original problem inside the dielectric (region Fq4 between
Sg and S.q). The surface equivalent currents are defined as
follows:

El/ - ('ﬁ/ ¢ El/)'ﬁf = ncunO(ﬁ X HV)

on S7 (g=1dore) @)
on S% (¢ =1 or m) 3

where p is ce, c¢d, or d, v is 0 or d, and the sign of the normal
is + for v = 0 and — for v = d.

Using the impedance boundary condition given in (1), the
equivalent magnetic surface currents can be expressed in terms
of the equivalent electric surface currents on S¢,.

M, =nymo(Jyxn) onS,(pisceorcd). (4)

R Ry

(&g, 1g) E=0,H=0

Fig. 3. The empty space equivalent situation.

(Rc,Re) E=0, H=0

Fig. 4. The dielectric region equivalent situation.
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In the zero field regions, the constitutive parameters are
taken to be the same as in the nonzero field region, so that
the equivalent currents radiate in an unbounded homogeneous
region. The tangential components of F and H must be zero
just outside S, and Sy so that:

Etan(Ji: M ) + Etan(JZe) + Etan (J:;ea Mi )
+ Eian(M7)+Eian(Ja, My) — 0 just outside S, and Sy

©)

nx H(Ji, M)+ A x H(JS)+a x H(J:,, M)
+ n X H(M:;)'}'fl X H(Jd,Md) =0

just outside S, and S, 6)

Etan(']ze) - Eﬁan (JZd + Mzd)
—E¢on(M7)—EBian(J4, M4) =0 just outside S.q and Sy
Q)

—f x H(JS) —f x H(J.y, M%)

'—’fLXH( Z})—’leH(Jd,Md)=O

just outside S.q and Sy ®)
where

Eon=—-nxnxE. C)

Equations (5) and (7) express the electric field boundary
condition in the region R, and the region Ry of the equivalent
situations. These two equations form a set of integral equations
known as the electric field integral equation (EFIE).

Equations (6) and (8) express the magnetic field boundary
conditions in region R, and region R, of equivalent situations.
These two equations form a set of integral equations known
as the magnetic field integral equation (MFIE).

A new set of integral equation can be obtained by combining
the equations of the EFIE and the MFIE. This new set of
equations is referred to as the combined field integral equation
(CFIE). To obtain the equations of CFIE, the equations of the
EFIE are multiplied by dimensional and scaling factor and
then added to the equations of the MFIE. The equations of the
CFIE are MFIE +oEFIE/7g (+ for the inside equations and
— for the outside equations). The dimensional constant 7 is
required so that the dimensions of the EFIE match those of the
MFIE. In principle, the value of scaling factor « is arbitrary
as long as the real part of « is positive (usually « is real and
on the order of unity). In practice, the numerical results are
relatively insensitive to c.

In general, the analysis of waveguides is a three-dimensional
problem. However, at cutoff frequencies, it is a two-
dimensional problem because there are no propagating waves.
As a result, the cutoff wavenumbers can be determined from
the two-dimensional problem. Because the waveguide is a 2-
D problem at cutoff, an arbitrarily polarized wave can always
be written as the combination of waves that are transverse
electric (TE) and transverse magnetic (TM) to the axis of the
waveguide (here taken to be the z direction).

In the TM case at cutoff, the equivalent electric currents
are all axially directed and the equivalent magnetic currents
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are circumferentially directed. The equivalent currents can be
written in the following form:

J” Jiz
M = Mgt

(10)
an

where p stands for (ce), (cd), or (d), and ¢ stands for (3), (e),
or (m). The position for g is left blank when p is d. In these
expressions, 2 and ¢ are unit vectors in z direction and the
tangential direction, respectively, and
t=2%2xn. (12)
Specializing (4) to the TM case, results in the following
equation:
M;i =‘77,,7)on,§ on S;; (p is ce or cd) .

(13)

The currents in (10), (11), and (13) give rise to TM fields
only. If these currents are substituted into (5)—(8), the scaler
integral equations for the TM case are obtained.

In the TE case at cutoff, the equivalent electric currents
are all circumferentially directed and the equivalent magnetic
currents are axially directed. The procedure for obtaining the
scaler integral equations for the TE case is similar to that for
the TM case. ‘

III. METHOD OF MOMENTS

To apply the MM, the boundaries of the waveguide are
divided into segments. Here, a piecewise linear approximation
of the boundaries of the waveguide is made. The surface
cutrents are expanded on each segment in terms of pulse
functions. Then the point matching method is employed on
the center of each segment. This method results in a system
of linear equations in terms of unknown coefficients.

For the TM case, the equivalent currents are expanded as

Ji=2Y IP,

on Si(p is ce,cd or d, q is e or m)

(14)

and

= Z 1K, P,

n

on Si(p is ce,cd or d,q is m).

(15)

In (14) and (15), I,, and K, are the to-be-determined electric
and magnetic current expansion coefficients, and the P, are the
pulse expansion functions. The vector ¢, is the unit tangent on
zone n. From (13), the magnetic currents on the IBC surfaces
are

M; = Z tnnpnoln Pa(p is ce or cd). (16)
k(3

If the above equations are substituted into scaler equations
for TM case and the resulting expressions are required to be
satisfied at the matching points, the original problem can be
reduced to a matrix equation of the form

[Z®RNT]=[V]. a7n
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In (17), Z is a square matrix of order n'S* + 2ng4 + ntot
where, n't, n'’*, and nlS are the numbers of segments on
Sces S, and S¢q, respectively. Expressions for the generalized
impedance elements of [Z(k)] are given in [12].

For the TE case, the procedure of applying MM is similar
to that in TM case. The impedance elements in the TE case
can be derived by using duality from the impedance elements
in the TM case.

At cutoff, no incident wave is necessary to produce the
fields inside the waveguide, the matrix Z is singular and the
determinant of the matrix Z is zero. As a result, the cutoff
wavenumbers are characterized by

det[Z(k.)] = 0. (18)
The determinant in (18) can be determined using the LU
decomposition method [13].

In the method of moments, the expansion set of the equiv-
alent currents is not complete, so the absolute value of the
matrix determinant cannot be exactly zero. As a function of %,
the matrix determinant shows a set of minimums instead. The
values of k, where the minimums occur, are the approximate
cutoff wavenumbers. The locations of the minimums are here
determined by Muller’s method. Initial guesses for the values
of the cutoff wavenumbers are obtained by scanning the range
of k values of interest with the body discretized into relatively
large segments (approximately one-fifth wavelength zones).
The body is then discretized into relatively small segments
(approximately one-twentieth wavelength zones) and Muller’s
method is used for each guess. The larger the number of the
segments taken in the MM solution, the more exactly the
cutoff wavenumbers can be obtained. At cutoff, the smallest
eigenvalue of [Z(K.)], Amin, corresponds to the wavenumber
in the z direction. It is not zero because of the incomplete
expansion of the wall currents. The eigenvector of the MM
matrix corresponding to Amin is an approximation of the wall
currents at cutoff.

IV. NUMERICAL EXAMPLES

A numerical code was developed on the Cray-XMP su-
percomputer. Using this code, the cutoff wavenumbers of
several typical geometries were calculated. Results generated
with this code are presented in this section. First, some
geometries with analytical solutions are conmsidered. Then,
more complicated geometries are considered and the results
are compared to those obtained by other authors. Finally, a
new ridged waveguide with dielectric loading and corrugated
surfaces is considered and the results are discussed.

A. Circular Waveguide

As a first example, a hollow circular waveguide is con-
sidered. This example is the test case for curved boundaries.
In Table I, the computed results (both TE and TM case)
are compared with the exact results. The MFIE is used for
this geometry. The circular boundary is divided into thirty
segments. The largest difference between the computed values
and the exact values given in Table I is less than 0.5%.
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TABLE I
CUTOFF WAVENUMBERS FOR THE HOLLOW CIRCULAR WAVEGUIDE
wITH UNITY RADIUS

™ TE
Exact Computed Exact Computed
2.4048 2.4108 1.8412 1.8449
3.8317 3.8382 3.0542 3.0629
5.1356 5.1429 3.8317 3.8356
5.5200 5.5272 4.2012 4.2164

B. Partially Dielectric Filled Rectangular Waveguide

As a numerical example of partially dielectric filled waveg-
uides, the waveguide shown in Fig. 5(a) was investigated. Half
the waveguide is filled with dielectric with relative permittivity
equal to 1.5. The other half is assumed to be vacuum. The
exact solution for this geometry is given in [15]. Above cutoff,
independent modes TE to z or TM to x exist in this waveguide.
At cutoff, modes TE to z correspond to modes TM to z and
modes TM to x correspond to modes TE to 2. In Table II, the
computed results are compared to the exact solutions. Here, the
matrix is of order 102 and the MFIE is used. The largest error
in Table II is less than 0.1%. Note that the boundary of the
dielectric region must be divided according to the wavelength
in the dielectric material to achieve accurate solutions.

C. Half of the Partially Filled Rectangular Waveguide

For the case above, the symmetry of the waveguide can
be advantageously considered to reduce the matrix size. As
illustrated in Fig. 5(b), the symmetry plane is denoted as PP’.
At cutoff, the original problem can be subdivided into four
distinct cases: TM or TE to z modes with PEC or PMC
walls at PP’. The PEC wall provides the cutoff wavenumber

p
A y ’
a
PMC
81_ K, T or sr ’u’r
d : PEC
&gl x g0 Mg
0 b ) b/2
P
(@ (b)

Fig. 5. (a) Partially dielectric filled rectangular waveguide. For this example
pr = 1.0, ¢ = 1.5,a = 0.45,b = 1.0, and d = 0.225. (b) Half of the
partially filled rectangular waveguide.

TABLE I
CUTOFF WAVENUMBERS FOR PARTIALLY FILLED RECTANGULAR WAVEGUIDE
™ TE
Exact Computed Exact Computed
6.8072 6.8086 6.2136 6.2145
8.3277 8.3259 6.8356 6.8379
10.3522 10.3409 8.4665 8.4694
12.6140 12.5882 10.7253 10.7295
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TABLE III
CUTOFF WAVENUMBERS FOR PARTIALLY DIELECTRIC
FILLED RECTANGULAR WAVEGUIDE (HALF) TM

(PMC*) (PEC*)
Exact Computed Computed
6.8072 6.7971
8.3277 8.3172
10.3522 10.3274
12.6140 12.5699
12.9932 12.9683

*PMC and PEC denote the wall of symmetry.

corresponding to the modes that have zero tangential electric
field on the plane of symmetry of the original problem. On the
other hand, the PMC wall provides the cutoff wavenumbers
corresponding to modes that have zero tangential magnetic
field on the plane of symmetry of the original problem. If the
cutoff wavenumber is the same for PEC wall and PMC wall
cases, it means that the tangent electric and magnetic fields
are both zero on the plane of symmetry.

In Table III, the symmetry of the waveguide has been used
to replace the plane of symmetry with a PEC or PMC wall.
The results in Table III are for the TM to 2 (TE to ) case. For
the purpose of comparison, the length of the zones remained
unchanged when symmetry was considered. The matrix order
using symmetry is 58 (it was 102 before). The EFIE was used
for the case of the PEC at the plane of symmetry, and the MFIE
was used for the case of the PMC at the plane of symmetry.
The error of the computed values in Table III is then 0.2%

(compared to 0.1% before). Using symmetry, the matrix size

is reduced and the accuracy remains at an acceptable level.
Accuracy matching the previous result can be achieved using
smaller zone size with the waveguide symmetry. Reducing
the zone size to increase accuracy while using symmetry
still results in reduced matrix order compared to solving the
complete problem.

D. T-Septate Rectangular Waveguide

The T-septate rectangular waveguide, illustrated in Fig. 6,
has been considered by many investigators. The current method
can be used for this geometry because pulse expansion func-
tions and point matching method are employed in the MM (the
matching points need not be at the junctions of the T-septate).
For this waveguide, the EFIE is used because the T-septate is
assumed to be infinitesimally thin. The results of the present
method are compared to those of {7} in Table IV. In [7], the
finite difference time domain method was used to find ‘the

- a -

S

Fig. 6. T-septate rectangular waveguide. For this example, a =
b=0.45,d =0.25, and w = 0.125.

1.0,
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TABLE 1V
CUTOFF WAVENUMBERS FOR THE T-SEPTATE RECTANGULAR WAVEGUIDE
™ TE

Reference [7] Present Reference [7] Present
8.12 8.1302 3.00 3.0015
10.88 10.8720 5.49 5.4265
14.24 14.3124 7.22 7.2252
14.50 14.5439 8.88 8.8625

cutoff wavenumber. The matrix in the present method was of
order 64. The largest difference in Table IV is about 1.0%.

E. Coaxial Waveguide

Fig. 7 shows a coaxial waveguide with a rectangular con-
ducting core and circular conducting exterior boundary. In
Table V, the solutions of this example are compared to the
values obtained by Swaminathan ef al. [9] using surface
integral formulations also. The largest difference is about
1.0%. The EFIE is used here. The matrix size is of order 48.

F. Two-Walled Rectangular Corrugated Waveguide

Fig. 8 shows a two-walled corrugated rectangular wave-
guide. This geometry is a test case for impedance surfaces. In
this geometry, the slots are not in the longitudinal direction.
Thus, the cross section of this waveguide is not the same in
every plane-cut normal to the direction of propagation, which
means that this is not a two-dimensional problem. However,
if the front surface of the corrugations is taken as impedance
surface, this geometry can be solved as a 2-D problem. In
the actual geometry, there is a constant number of slots per
wavelength, and the ridges are assumed to be infinitely thin
so that the longitudinal geometry is not a parameter in the
expression of the surface impedance. With these assumptions,

Fig. 7. Coaxial waveguide. For this example, ¢ = 1.0, b = 0.5, and
c=0.25.
TABLE V
CUTOFF WAVENUMBERS FOR COAXIAL WAVEGUIDE
™ TE
Reference [9] Present Reference [9] Present
3.8919 3.8975 1.7407 1.7404
4.1666 4.1706 3.0441 3.0464
4.4450 4.4500 4.2199 4.2175
5.2645 5.2657 4.6451 4.6127
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Fig. 8. Two-walled rectangular corrugated waveguide.

the surface impedance is [14]

Zy = kel tan B s
B

where 3?2 = k? — (nm/a)? and n is the mode number. In
(19), the quantity s is the depth of the corrugations. If 81 is
small when s is small, the surface impedance can be taken as
mode independent so that Z, = jwps. At the surfaces of the
corrugations, y = £b/2, E,; = 0, and F, # 0. This boundary
condition will be satisfied by hybrid electric (HE) modes (TE
to x modes). At cutoff, HE modes reduce to the modes of TM
to z. As a result the TM to z case can be used to compute the
cutoff wavenumber of HE modes.

An analytical solution for this problem is available in [14].
The cutoff wavenumber of several modes are calculated from
the exact solutions and compared to those obtained using
the present method as shown in Fig. 9. In this figure, the
cutoff wavenumbers are plotted versus the ratio of b/a with
s/a = 0.05. The largest difference between the numerical
and analytical results in Fig. 9 is less than 0.1%. The CFIE
formulation (o = 1) is employed in this example.

(19)

G. Dielectric-Loaded Double-Ridged Waveguide

Table VI lists the cutoff wavenumbers obtained by the
present method for the dielectric-loaded double-ridged wave-
guide illustrated in Fig. 10(a). The matrix order is 158. The
results obtained with the present method are compared to those
computed using the finite element method in {3]. In [3], only
certain TE modes are considered. Modes not reported in [3]
- are also given in Table VL

Due to the symmetry of this waveguide, only one-quarter
of the original geometry needs to be considered in the MM
solution. This is illustrated in Fig. 10(b). The original problem
can be subdivided into eight distinct cases: TE or TM to z with

— exact
numerical

12 x

cutoff wavenumber

b/a

Fig. 9. Cutoff wavenumbers of two-walled rectangular corrugated wave-
guide.
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TABLE VI
CutorF WAVENUMBERS FOR ORIGINAL DIELECTRIC-LOADED
DOUBLE-RIDGED WAVEGUIDE

TE ™
Reference 3] Present Reference [3] Present
0.1288 0.1291 - 0.6576
NA 0.3137 NA* 0.8694
NA 0.5080 0.9786
0.6190 0.6190 1.0758
0.6552 0.6550 1.1741
NA 0.6931 1.2868
NA 0.7608 1.3811
0.8890 0.8871
NA 0.9459
NA 1.0054

*NA means that the published data are not available.

PEC or PMC walls at the two planes of symmetry, s and p. The
modes are identified by a notation like TE(Me) that indicates
a TE mode in the subdivided problem with PMC on s and
PEC on p. The cutoff wavenumbers given in Table VI from
[3] are for TE(Me) modes. The largest difference between our
results (calculated without the use of waveguide symmetry)
and those in [3] is about 1.0%.

Cutoff wavenumber results determined using waveguide
symmetry are given in Table VII for TE modes. In the sub-
divided problem, the matrix order is 48, which is one-third
of the matrix order obtained from the complete geometry.
The boundary segmentation is maintained as in the original

!
s !
| |
bl &g Mg &y Iw .&
o\
fo-Ho L pMe
@ (b)

Fig. 10. (a) Dielectric-loaded double-ridged waveguide. For this example,
pr = 1.0, e, = 1.5, = 12.70, b = 10.16, s = 2.54, and w = 2.79. (b)
One-quarter of the dielectric-loaded double-ridged waveguide.

TABLE VII
CUTOFF WAVENUMBERS FOR DIELECTRIC-LOADED DOUBLE-RIDGED
WAVEGUIDE (ONE-QUARTER)

TE

Original TE(Me)* TE(eE)* TE(Mm)* TE(Mm)*

0.1291
0.3137
0.5080
0.6190
0.6550
0.6931
0.7608
0.8871
0.9459
1.0054

0.1291
0.3160 0.3165
0.5116
0.6192 0.6193
0.6559
0.6895 0.6940
0.7658
0.8894
0.9446 0.9446

1.0116

*Lowercase m or ¢ denotes magnetic or electric wall at symmetry
plane S; uppercase M or E denotes magnetic or electric wall at
symmetry plane P.
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Fig. 11. (a) Two-wall corrugated dielectric-loaded double-ridged waveguide.
For this ¢xample, ¢ = 1.0, b = 1.0, and ¢ = 0.2, (b) One-quarter of the
two-wall corrugated dielectric-loaded double-ridged waveguide.

cutoff wavenumber

Fig. 12. Cutoff wavenumber versus the dielectric constant in a two-wall
corrugated dielectric-loaded double ridged waveguide.

problem. Because the matrix order is greatly reduced in the
subdivided problem compared to the original problem, the
valleys around the null points of the determinant of the MM
matrix. are wider so that the cutoff wavenumbers are easier
to locate.

H. Two-Wall Corrugated Dielectric-Loaded Ridged Wavegufde

_The final example was selected to have a combination
of impedance. and dielectric materials as well as perfect
electric and magnetic conductors. This example is the two-
wall corrugated dielectric-loaded ridged waveguide shown in
Fig. 11(a). Here, the surface impedance is treated as in the
example of Fig. 8. At the cutoff frequency, the TE to =
modes reduced to the. TM to z modes. Thus, the TM to =
polarization is considered. Using the partitioning procedure,
the problem is divided to eight distinct cases (as in the
dielectric-loaded double-ridged waveguide). The partitioned
waveguide is shown in Fig. 11(b). The cutoff wavenumbers of
the dominant mode are plotted versus the dielectric constant
with the aperture width, 2w, and the corrugation depth, s, as
the parameters in Fig. 12. When the aperture width is small,
the cutoff wavenumber is not affected by the dielectric constant
indicating that the waveguide is acting as two rectangular

waveguides, each with one corrugated wall. When the aperture

width increases, the cutoff wavenumber varies significantly
with the dielectric' constant, but the cotrugation -depth has
minimal effect on the cutoff wavenumber. Note that the
interior dimensions of the waveguide, a and b, are constant
so that increasing the corrugation depth increases exterior
dimensions of the waveguide. The cross section used to
analyze the waveguide does not change with corrugation depth
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because the surface impedance is used to model the variation
in corrugation depth.

V. CONCLUSIONS

For computation of cutoff wavenumber, a numerical tech-
nique has been successfully applied to partially dielectric filled
waveguides of arbitrary cross section. This method is based
on surface integral formulations and the method of moments.
Polarizations TE to z and TM to z are considered separately.

Since perfect electric conductor, perfect magnetic conduc-
tor, and imperfect conductor surfaces have been considered
on the conducting wall of the waveguides, techniques may be
used to reduce the matrix size in the method of moments.

The impedance boundary condition is used on the imperfect
conductor surfaces. The IBC is also used to simulate corru-
gated walls so that the equivalent currents inside the corrugated
slots need not be considered. This reduces the MM matrix size.

. Waveguide cross-section symmetry is also used to reduce
the matrix size. The planes of cross-section symmetry are
replaced by perfect electric conductor or perfect magnetic
conductor walls, so that the 0r1g1na1 problem can be subdivided
into several smaller problems. The cutoff wavenumbers of new
geometries that use electric or magnetic conductor walls at the
symmetry planes are the same as that of original geometry.
Since only a part of the original geometry is considered, the
matrix size is greatly reduced. .

No spurious modes were observed in this work. The accu-
racy of the method presented here has been tested with many
typical examples. In most geometries, the computed results are
compared to dnalytical results or to published data. Excellent
agreement has been achieved. '
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